<ins id="d7nd3"><em id="d7nd3"></em></ins>

<font id="d7nd3"></font>

    <ins id="d7nd3"><em id="d7nd3"></em></ins>

    <menuitem id="d7nd3"></menuitem>

        <var id="d7nd3"><span id="d7nd3"><dfn id="d7nd3"></dfn></span></var><font id="d7nd3"><em id="d7nd3"><meter id="d7nd3"></meter></em></font>
        <font id="d7nd3"></font>



        當前位置:首頁  >  技術文章  >  應用案例 | 基于QCL的大氣N2O測量的開路傳感器

        應用案例 | 基于QCL的大氣N2O測量的開路傳感器

        更新日期:2023-11-23      點擊次數:656

        近日,來自山東師范大學光學與光子器件技術重點實驗室的聯合研究團隊發表了一篇題為 Open-path sensor based on QCL for atmospheric N2O measurement 的研究論文。

        Recently, a collaborative research team from the Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University published a research paper titled Open-path sensor based on QCL for atmospheric N2O measurement.





        As one of the important greenhouse gases, nitrous oxide (N2O), can give rise to air pollution and global warming. N2O has a long atmospheric lifetime, and worse its global warming potential is 300 times higher than carbon dioxide. Therefore, the development of a fast, real-time, and high-precision gas sensor system for detecting the atmospheric N2O concentration level is essential for the better understanding of global warming and climate changes.

        Tunable diode laser absorption spectroscopy (TDLAS), as a versatile technique, has be widely reported for real-time analysis of gas compositions in the field of high sensitivity, selectivity, and fast response and it has been demonstrated as a dependable tool for real-time detection of N2O. Wavelength modulation spectroscopy (WMS) based TDLAS has been proved to be a good method for improving the detection sensitivity and reducing the electronic noise. Most of sensors are closed-path systems. This severely restricts the practical applicability of continuous monitoring in remote or open-field researches, and limits the spatial coverage of the measurements. To address this problem, in this paper, we develop a compact openoptical-path gas sensor system.



        The system framework of the open-path N2O gas sensor based on QCL is depicted in Fig. 1. It mainly consists of three parts: the lasersystem, the optical elements, and the data processing section. The laser-system consists of a QCL, a laser drive and a signal generator. The optical component has the detecting and reference optical paths. The data processing section includes the data acquisition, signal processing and display modules.

        Fig. 1. The N2O sensor system schematic diagram.

        寧波海爾欣光電科技有限公司為此項目提供了HPQCL-Q™ 標準量子級聯激光發射頭,QC750-Touch™ 量子級聯激光屏顯驅動器,HPPD-M-B 前置放大制冷一體型碲鎘汞(MCT)光電探測器。

        HealthyPhoton Technology Co., Ltd. , provided a QCL(HPQCL-Q), a driver(QC750-Touch), a HgCdTe photodetector (HPPD-M-B) for this project.

        HPQCL-Q™(1).jpg    QC750-Touch™(3).jpg        HPPD-M-B.jpg  

        HPQCL-Q™            QC750-Touch             HPPD-M-B

        在這項工作中,需要考慮N2O或其他物質(主要是水蒸氣)的光譜吸收干擾,以減少它們對系統特異性和準確性的副作用。如圖2(c)所示,根據HITRAN 2016數據庫,已經模擬了N2O、COCO2的吸收線強度,范圍從2020 ~ 2220 cm-1。幸運的是,N2O的基本振動帶在波數為2200cm-1左右,遠離水蒸氣的吸收帶。因此,室溫下的QCL可以達到N2O的基本振動帶,檢測靈敏度為ppb級??紤]到靈敏度和成本,選擇了中心波數為2203.73  cm-1QCL來檢測N2O。QCL的中心電流和溫度分別設置為330 mA36.0 °C。


        In this work, we need to take the spectral absorption interference of N2O or other substances (mostly water vapor) into consideration in order to reduce their side effects on the specificity and accuracy of the system. As depicted in Fig. 2(c), the absorption line intensity of N2O, CO and CO2 have been simulated from 2020 ~ 2220cm-1, according to the HITRAN 2016 database. Fortunately, the unique fundamental vibration band of N2O is around wavenumber of 2200cm-1, which is stay away from the absorption band of water vapor. Therefore, the N2O fundamental vibration band can be reached by room-temperature QCL, and the detection sensitivity is ppb level. Taking sensitivity and cost into consideration, a QCL emitting at center wavenumber of 2203.73 cm-1 was selected for detection of N2O. Of the QCL, the central  current and temperature were set at 330 mA and 36.0 ?C, respectively.

        Fig. 2. (a): The relationship between the QCL emission wavenumber and drive current. (b): The dependence the QCL emission wavenumber and temperature. (c): The intensity distribution of absorption lines of N2O, CO and CO2 in the range of 2020 ~ 2220 cm-1.


        我們實現了用一種緊湊的開路氣體傳感器檢測大氣中的N2O。在這種傳感器中,采用了波長調制光譜學與1f-歸一化WMS檢測策略,以提高檢測靈敏度并消除光強度波動的影響。對20 ppm N2O標準氣體進行了校準,標準偏差為0.011 ppm,表明具有高精度。對實驗室N2O空氣進行了連續7小時的測量,濃度的標準偏差低于1.5 ppb。我們使用Allan偏差分析得出,在1秒的積分時間下,N2O的檢測限為1.1 ppb,而在最佳積分時間為95秒時,靈敏度可以提高到0.14 ppb。通過在自然環境中進行的為期兩天的實時測量驗證了所開發傳感器系統的長期穩定性。得出的結果充分證明我們的開放光學路徑氣體傳感器系統具有快速響應、良好穩定性、高靈敏度和高精度。



        Open-path sensor based on QCL for atmospheric N2O measurement,

        Results in Physics 31 (2021) 104909